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bstract

In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main
arameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (Vgth

), liquid to gas flow rate ratio (L/G), and

xial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three
ndependent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a
etter agreement with experimental data.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Strict environmental regulations adopted in recent times and
pplied to pollutions especially air pollutions has forced fac-
ories to take steps to curb emission into the atmosphere. This

eans not only improving their existing equipments but also
he use of new technologies. Venturi scrubbers are the most effi-
ient wet devices for collecting fine particles and soluble gas
ollutants.

The three main parts of a typical venturi scrubber is shown in
ig. 1, which are the convergence, throat, and diffuser whereby

he velocity of the entering gas is increased so that the high
inetic energy generated atomizes the injected liquid to very
mall drops and liquid reaches the velocity of gas as it passes
hrough the diffuser. In this way particles are transferred from
he gas to the liquid, according to the inertial impaction, but the
cceleration of the gas increases the pressure drop.

In this process the ratio of particle collection to pressure drop

xpresses the efficiency. Therefore, the study of pressure drop
n venturi scrubbers due to its necessity have been the subject of

any researches.
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Calvert [6] who presented the first model for pressure drop
n venturi scrubbers, neglected wall friction and momentum
ecovery in the divergent section, so other researchers tried to
mprove this model. Boll [5] solved simultaneous equations of
rop motion and momentum exchange for variable cross section
ucts with acceptable results except for very high and low liquid
o gas ratios where it did not show agreement with the exper-
mental data. Azzopardi and Govan [2] considered momentum
osses due to accelerating droplets entrained from the film and
he interfacial drag between the fast moving core and the slower

oving liquid film. However, they had little successes with this
rocedure. Later on, Viswanathan et al. [17] developed an annu-
ar flow pressure drop model in which a constant core quality
hroughout the venturi were assumed. After that their model
as improved by considering the growth and separation of the
as boundary layer [3,4]. Allen and van Santen [1] considered
he importance of dry pressure drop in venturi scrubbers and
ompared the experimental pressure drop with the predicted
alues. Pulley [15] carried out various experiments and sug-
ested more effective variables such as drop size, entrainment
t liquid injection, entrainment and deposition along the venturi

ength and corrected the proposed model of Azzopardi et al. [3].
iswanathan [18] investigated the effect of liquid to gas ratios,

hroat gas velocities, and throat areas and introduced a simple
mpirical correlation for the pressure drop in a variable throat

mailto:amohebbi2002@yahoo.com
dx.doi.org/10.1016/j.jhazmat.2006.09.005
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Nomenclature

Dth throat diameter of venture scrubber (m)
L liquid flow rate (m3/h)
L/G the liquid to gas ratio (m3/m3)
�P pressure drop (mm w g)
R2 regression constant
Vgth

overall gas velocity in the throat (m/s)
z the axial distance of the venturi scrubbers (m)
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Fig. 1. The schematic of a venturi scrubber.

enturi scrubber. Gonçalves et al. [10] studied the previous mod-
ls for the prediction of pressure drop in venturi scrubbers and
tated that most of them must be used with caution. Gamisans
t al. [9] studied the effect of throat diameter, length and spray
ngle on the performance of ejector venturi scrubbers.

There are several data infilling techniques which have been
sed commonly, e.g. artificial neural networks (ANNs), regres-
ion methods, etc. Despite the criticisms formulated against
NNs techniques, these techniques were found to be powerful

ools when compared to multivariate regression based models
or infilling the missing data [13]. ANNs techniques can be used
o express a non-linear mapping between variables with no prior
ssumptions on the variables (linear or non-linear as in regres-
ion methods) and these techniques can cope with missing data
8]. In the past decade, ANNs have been used intensively in
arious fields. However, their applications for infilling pressure
rop data in venturi scrubbers have not been considered so much
efore.

. Artificial neural networks

In general neural networks are simply mathematical tech-
iques designed to accomplish a variety of tasks. Neural net-
orks can be configured in various arrangements to perform
range of tasks including pattern recognition, data mining,

lassification, and process modeling. ANNs are networks of
nterconnected simple units (nodes) that are based on a greatly
implified model of the human brain.

The advantage of the ANNs, even if the “exact” relation-
hip between sets of inputs and outputs data is unknown but

s acknowledged to exist, is that the network can be trained to
earn that relationship, requiring no prior underlying assump-
ions (non-linear versus linear) as in conventional methods, and
hey are regarded as ultimate black-box models.
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t
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The architecture of an ANN consists of input, hidden, and
utput layers. The number of neurons (nodes) in the input and
utput layers is the same as the number of the known independent
arameters. The number of hidden neurons has been determined
uring the training process by trial and error method.

There are two main types of ANNs, i.e. feed-forward net-
orks (where the signal is propagated only from the input nodes

o the output nodes) and recurrent networks where the signal is
ropagated in both directions. A neural network is trained in
rder to establish a fit to a set of examples, i.e. the network
hould output values close to the target values assigned by an
xpert-teacher to the training set of objects. Well trained net-
orks generalize in the sense that their outputs are correct for
bjects not available in the training set.

The back-propagation method is a technique used in training
ultilayer neural networks in a supervised manner. The back-

ropagation method, also known as the error back propagation
lgorithm, is based on the error-correction learning rule [14]. It
onsists of two passes through the different layers of the network:
forward pass and a backward pass. In the forward pass, an

ctivity pattern is applied to the input nodes of the network, and
ts effect propagates through the network layer by layer. Finally,
set of outputs is produced as the actual response of the network.

Although ANNs are utilized in various fields of science,
owever, the application of ANNs in infilling data of pressure
rop in venturi scrubbers remains sparse. In this study ANN
echniques by feed-forward back-propagation algorithms are
mployed using Matlab’s toolbox [12].

. Methodology

Azzopardi and Govan [2] identified five mechanisms causing
ressure drop in venturi scrubbers and showed that three main
arameters in this phenomenon are gas velocity in the throat
art of the venturi scrubber (Vgth

), liquid to gas flow rate ratio
L/G), and axial distance of the venturi scrubber (z) which indi-
ated venturi geometry. In previous investigations empirical or
emi-empirical pressure drop correlations for numerous and var-
ed venturi scrubbers has been produced as a function of these
arameters.

In this study, ANNs are devoted to the estimation of pres-
ure drop in venturi scrubbers. Three separate neural networks
re designed. The experimental data are extracted from five dif-
erent venturi scrubbers, a rectangular venturi scrubber of the
ease Anthony type [17], a circular and an adjustable prismatic
enturi scrubber that are both used wetted wall irrigation [1]
nd two ejector venturi scrubbers with different throat diame-
er [9]. All the five venturi scrubbers are used for training the
rst network. The input vectors for this network are Vgth

, L/G
nd z. The second network that evaluates dry pressure drop, is
ased on the experimental data of circular venturi scrubber. The
ain parameters of this network are Vgth

and z. In the third net-
ork we have shown that throat diameter, liquid flow rate, throat

as velocity and axial distance of the venturi scrubber, can be
qually considered as the main parameters in pressure drop of
venturi scrubber. So, the third network has four inputs and is

rained based on the experimental data of both ejector venturi
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Table 1
The range of experimental data used for training network No. 1

Venturi type Vgth (m/s) L/G (×103 m3/m3) z (m) �P (mm w g) Reference

Rectangular 45.7, 61.0, 76.0 0.40, 1.23, 1.87 0–2 0–818.6 [17]

Circular
88.7 0.61, 0.76, 0.88, 1.01 0–1.415 453.3–834.5 [1]
79.1, 99.5, 110 0.2–1.0 1.415 178.3–670.0

Prismatic 47, 66, 84, 114 0.2–1.3 0.74 70–827 [1]

Ejector
8–24 0–12.75 0.75 −9.4–67.1 [9]
11, 27 3.573, 7.145, 10.432 0–0.75 −18.0–62.2

Ejector 39 2.267, 4.534, 6.620 0–0.75 0.1–166.3 [9]

Table 2
The range of experimental data used for training network No. 2

Venturi type Circular
Vgth (m/s) 80.3, 94.5, 99.5
z (m) 1–1.415
�
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eference [1]

crubbers and the circular one. Tables 1–3 show the domain of
nput and output parameters for three networks.

The ANNs contain three layers and follow feed-forward
ack-propagation algorithm to train the input data. The num-
er of neurons in the first layer may be varied from two to four
eurons. Despite this fact, the target vectors for all networks
nclude only one parameter which is the pressure drop value
�P) in the venturi scrubbers. In this work we have just one hid-
en layer with different number of neurons for three networks.
he design of ANNs is shown in Fig. 2. The input and target
ectors are entered in the network in the normalized way and
he networks are trained by these vectors. After the end of train-
ng in the best manner with the least error compared with the
nput data, the network is capable of simulating a set of data not
een before.

. Results and discussions

In this study, three different experimental data sets have been
sed to design the ANNs. In order to increase the number of
ata, we have interpolated between every two close data. The
umber of patterns (i.e. number of data sets) for training and
imulating networks 1, 2 and 3 are 661, 87 and 368, respec-

ively. One half of three different data sets for various venturi
crubbers are used here to train three independent ANNs and
he other half are entered to the networks as the input neces-
ary for simulating process. Networks are containing 11, 5 and

F
c
T
t

able 3
he range of experimental data used for training network No. 3

enturi type Dth (m) Vgth (m/s) L (m3/h)

ircular 0.16
88.7 1.088, 1.355, 1
79.1, 99.5, 110 0.442–1.871

jector 0.15
8–24 0, 2.5, 5, 7.3
11, 27 0, 2.5, 5.0, 7.3

jector 0.10 39 2.5, 5.0, 7.3
Fig. 2. The design of ANNs.

neurons, respectively for their hidden layers. The number of
eurons for this layer was ascertained by trial and error, and the
ost suitable number of neurons was chosen in such a way that

he training results were converge out to the experimental data.
ig. 3 shows that the best number of neurons for ANN No. 1, is
network with 11 neurons in hidden layer which gives results

n good agreement with the experimental data. Figs. 4–6 show
he training results and the agreement between these data. On
he basis of such good trainings, the resulting ANNs are capable
nough to simulate the other half of data by their application to
he relevant networks gave such simulated data as depicted in
igs. 7–9. In these figures, simulated and experimental data are

ompared. An excellent agreement can be seen in between them.
he equation in the form of y =ax + b appearing in Figs. 4–9 is

he equation of the adapted least regression line with best state

z (m) �P (mm w g) Reference

.569, 1.964 0–1.415 453.3–834.5 [1]
1.415 178.3–670.0

0.75 −9.4–67.1 [9]
0–0.75 −18.0–62.2

0–0.75 0.1–166.3 [9]
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Fig. 3. Mean square error for training data with various numbers of neurons in
hidden layer for ANN No. 1.
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Fig. 6. The ANN No. 3 training results.
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Fig. 4. The ANN No. 1 training results.

s y = x happening when all the points fall exactly on a line at
5◦, i.e. the network predicts results exactly the same as the
xperimental ones. Constants of the equation however, show the
eviation of the state from the ideal one. In addition to the equa-
ion, the regression constants (R2-value) which are also appeared
n these figures show the agreement of trained and simulated data
ith experimental data to be better than the regression line. In
n ideal situation, when these parameters are exactly similar,
2 = 1.

After confirming the networks (i.e. training and simulating),
he effect of various parameters such as throat gas velocity, liquid

Fig. 5. The ANN No. 2 training results.

d
t
w

Fig. 7. The ANN No. 1 simulating results.

o gas ratio and distance along venturi on the pressure drop of the
enturi scrubber were obtained. The effects of the three parame-
ers L/G, Vgth

and z on the pressure drop in venturi scrubbers have
een investigated in different works previously [6,5,2,3,10]. The
imulated results for ANN No. 1, confirm the trend proposed by
heir works. Figs. 10–12 indicate their effects on the pressure
rop in this network. As one can see, there is good agreement
etween the experimental data and the results of ANNs. The

ependence of pressure drop in venturi scrubber No. 1 on liquid
o gas ratio (L/G) is due to droplet acceleration and friction of gas
ith wall or film. As a result, the pressure drop increases linearly

Fig. 8. The ANN No. 2 simulating results.
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Fig. 9. The ANN No. 3 simulating results.
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Fig. 12. The effect of distance along venturi on the pressure drop in rectangular
venturi scrubber (ANN No. 1).
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ig. 10. The effect of liquid to gas ratio on the total pressure drop in prismatic
enturi scrubber (ANN No. 1).

ith increasing liquid to gas ratio. Similarly, the pressure drop
n venturi scrubbers varies with throat gas velocity (Vgth

) in a
inear form. On the other hand, by increasing the distance along
enturi (z) the pressure drop first increases and then decreases.
n the throat section as a result of energy transferred in acceler-
ting the liquid film, the pressure drop increases. However, the
ressure drop rise in the throat is linear. The maximum pressure
rop happens at the end of the throat part. In the diffuser, pres-

ure is recovered from both the expansion of the gas and energy
ransfer from the decelerating droplets. Figs. 13 and 14 show
he effects of throat gas velocity and distance along venturi on
ry pressure drop in ANN No. 2. Pressure drop increases with

ig. 11. The effect of throat gas velocity on the total pressure drop in prismatic
enturi scrubber (ANN No. 1).

N
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ig. 13. The effect of throat gas velocity on the total pressure drop in circular
enturi scrubber (ANN No. 2).

hroat gas velocity because of friction of the gas against the wall
see Fig. 13) and it increases with axial distance in convergence
ection, being nearly constant in throat section and decreases in
iffuser because of the variations of velocity in different parts
f venturi scrubber (see Fig. 14).

In the next step, the calculated (simulated) results of the ANN

o. 1 as presented in this work and the calculated results from
odels proposed by Azzopardi and Govan [2], Boll [5], Calvert

7], Hesketh [11], and Yung et al. [19] are compared with the
xperimental data. These results are represented in Fig. 15. In

ig. 14. The effect of distance along venturi on the pressure drop in venturi
crubber No. 2.
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Fig. 15. The comparison of different models with the simulated results of ANN
No. 1.
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ig. 16. The comparison between the simulated results of ANN No. 3 with
he calculated results from modified model of Ripperger and Dau [16], for the
jector venturi scrubber with 150 mm throat diameter.

ig. 16, a comparison between the simulated results of ANN No.
with the calculated results from modified model of Ripperger

nd Dau [16], for an ejector venturi, is shown. In these figures,
imulated data are compared with the experimental and corre-
ated data. As can be seen, an excellent agreement exists between
imulated (ANNs results) and experimental data. Therefore,
NNs can predict the pressure drop in venturi scrubbers more
recisely than the other models. The agreement between the
imulated results of this work with experimental data approves
NNs as a new useful tool for calculating the pressure drop in
enturi scrubbers compared to other models.

. Conclusions

In this work, for the first time ANN approach was used for
redicting pressure drop in venturi scrubbers and the results indi-
ated that the methodology described using back-propagation
rtificial Neural Network (ANN) is a powerful tool not only

or accurately predicting pressure drop in venturi scrubbers, but
lso to identify the most important independent parameters.

The recommended ANNs approach has these advantages:
It is possible to train large systems with many inputs on
the basis of relatively small data sets. The resulting systems
usually have a moderately non-linear structure. They are of

[

[
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significant scientific interest as they contradict the earlier state
of knowledge.
For an available ANN that is trained well, the prediction of
data not seen before is not only precise but also speedy.
The modern technique, ANNs performs the prediction of
the outputs more accurately than the empirical and semi-
empirical correlations announced by previous researchers.
Cost reduction of the tests for measuring the pressure drop
in venturi scrubbers is the ultimate benefit gained by this
approach. Performing these tests and getting a large num-
ber of data, need vast expense which can be decreased by
using this method. When a system is trained, it can simulate
similar other data and give acceptable results to them with-
out requesting experimental results. Therefore, we can obtain
results by less experiment and less cost.

eferences

[1] R.W.K. Allen, A. van Santen, Designing for pressure drop in venturi
scrubbers: the importance of dry pressure drop, Chem. Eng. J. 61 (1996)
203–211.

[2] B.J. Azzopardi, A.H. Govan, The modeling of venturi scrubbers, Filtr.
Separ. 23 (1984) 196–200.

[3] B.J. Azzopardi, S.F.C.F. Teixeira, A.H. Govan, T.R. Bott, An improved
model for pressure drop in venturi scrubbers, Trans. Inst. Chem. Engrs.
B69 (1991) 55–64.

[4] B.J. Azzopardi, Gas-liquid flows in cylindrical venturi scrubbers: boundary
layer separation in diffuser section, Chem. Eng. J. 49 (1992) 55–64.

[5] R.H. Boll, Particle collection and pressure drop in venturi scrubbers, Ind.
Eng. Chem. Fund. 12 (1973) 40–50.

[6] S. Calvert, Venturi and other atomizing scrubbers efficiency and pressure
drop, AIChE J. 16 (1970) 392–396.

[7] S. Calvert, Scrubbing, Air Pollution, Vol. IV, 3rd ed., Academic Press, New
York, 1982.

[8] N. French, F. Krajewsky, R. Cuykendall, Rainfall forecasting in space and
time using neural network, J. Hydrol. 137 (1–4) (1992) 1–31.

[9] X. Gamisans, M. Sarra, F.J. Lafuente, B.J. Azzopardi, The hydrody-
namics of ejector-venturi scrubbers and their modeling by an annular
flow/boundary layer model, Chem. Eng. Sci. 57 (2002) 2707–2718.
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